Functions¶
- src.PythonDSSAnalysis.DSSHandler.data_normalizer(data, inputs=0)¶
Normalizes Data to Users Input, Creates conserved quantity for DSS analysis
- Parameters:
data (numpy.ndarray) – Data set to be normalized
inputs (dictionary) – Input file with corresponding model and data settings
- Returns:
Betas – Array with normalized data (array of Beta’s in DSS terminology)
- Return type:
- src.PythonDSSAnalysis.DSSHandler.effect_parameter_solver(effectmetric)¶
Returns the effect parameter. EQ 20
- Parameters:
effectmetric (numpy.ndarray) – Array with effect metric values
- Returns:
effectparameter – Float value of effect parameter.
- Return type:
- src.PythonDSSAnalysis.DSSHandler.geodesic_separation(dataBeta, dataD, modelEffectMetric, dataEffectMetric)¶
Returns the geodesic separation at each process time step. Eq 45 in DSS bubble applications
- Parameters:
dataBeta (numpy.ndarray) – Array with normalized conserved quantity of interest of the experiment
modelEffectMetric (numpy.ndarray) – Array with model’s effect metric values
dataEffectMetric (numpy.ndarray) – Array with experiment’s effect metric values
dataD (numpy.ndarray) – Array with temporal displacement rate values of the experiment
- Returns:
Local separation (numpy.ndarray) – Array with geodesic separation values at each process timestep between model and prototype.
Total separation (float) – float value of total geodesic separation
- src.PythonDSSAnalysis.DSSHandler.model_data_generator(time, inputs)¶
Generates the model dataset for comparison to experimental data
- Parameters:
data (inputs) – Input file with model values specified
time (numpy.ndarray) – Reference time value of datasets
- Returns:
Array with non-normalized data generated from model
- Return type:
ModelData
- src.PythonDSSAnalysis.DSSHandler.normalized_coordinates(omega, referencetime, processtime, processaction)¶
Returns the normalized coordinates and parameters to assess scale distortion. EQ 14a-d
- Parameters:
omega (numpy.ndarray) – Array with omega values
referencetime (numpy.ndarray) – Array with reference time values
processtime (numpy.ndarray) – Array with process time values
processaction (float) – Float value of process action
- Returns:
effectmetric (numpy.ndarray) – Array of effect metric values
normalizedreferencetime (numpy.ndarray) – Array of normalized reference time values
normalized reference time (numpy.ndarray) – Array of normalzied process time values
- src.PythonDSSAnalysis.DSSHandler.process_action_solver(time, temporalDisplacement)¶
Finds the process action (tau_s) using numerical integration. Eq 12
- Parameters:
time (numpy.ndarray) – Array with reference time values
temporalDisplacement (numpy.ndarray) – Array with Temporal Displacement Values (D)
- Returns:
process action – Value of Process time
- Return type:
- src.PythonDSSAnalysis.DSSHandler.process_time_generator(beta, omega)¶
Generates process time from an input of beta and omega values
- Parameters:
beta (numpy.ndarray) – Array with normalized conserved quantity of interest (Betas)
omega (numpy.ndarray) – Array with normalized agents of change (Omegas)
- Returns:
Tau – Array with process time values
- Return type:
- src.PythonDSSAnalysis.DSSHandler.standard_error(localseparation)¶
Returns an estimate of the standard error. 95% of values fall within +- 2sigma_est values. EQ 47 in DSS Bubble Dynamics Applications.
- Parameters:
localseparation (numpy.ndarray) – Array with normalized conserved quantity of interest of the data local separation between model and prototype at each process time point
- Returns:
sigmaest – Float value of estimate of standard error (total distortion)
- Return type:
- src.PythonDSSAnalysis.DSSHandler.temporal_displacement_generator(beta, omega, omegaprimes)¶
Generates the Temporal Displacement value.
- Parameters:
beta (numpy.ndarray) – Array with normalized conserved quantity of interest (Betas)
omega (numpy.ndarray) – Array with normalized agents of change (Omegas)
omegaprimes (numpy.ndarray) – Array with time derivative of Omegas
- Returns:
D – Array with Temporal Displacement Values
- Return type:
- src.PythonDSSAnalysis.DSSHandler.time_derivative(data, time)¶
Gets timed derivative using finite differences (can calculate omega or omega prime, first and second time derivative of beta respectively)
- Parameters:
data (numpy.ndarray) – Data set to be normalized
time (numpy.ndarray) – Reference time value of datasets
- Returns:
timederivative – Array with normalized data (array of omegas’s in DSS terminology)
- Return type:
- src.PythonDSSAnalysis.DSSHandler.value_to_array(size, value)¶
Returns an array with the first value being the value of interest while the rest are numpy.nan data type, this is for data saving purposes
- Parameters:
- Returns:
productArray – Array with value of interest in first element while rest is numpy.nan
- Return type: